Back to Search
Start Over
Lombardi Drawings of Knots and Links
- Publication Year :
- 2017
-
Abstract
- Knot and link diagrams are projections of one or more 3-dimensional simple closed curves into $R^2$, such that no more than two points project to the same point in $R^2$. These diagrams are drawings of 4-regular plane multigraphs. Knots are typically smooth curves in $R^3$, so their projections should be smooth curves in $R^2$ with good continuity and large crossing angles: exactly the properties of Lombardi graph drawings (defined by circular-arc edges and perfect angular resolution). We show that several knots do not allow plane Lombardi drawings. On the other hand, we identify a large class of 4-regular plane multigraphs that do have Lombardi drawings. We then study two relaxations of Lombardi drawings and show that every knot admits a plane 2-Lombardi drawing (where edges are composed of two circular arcs). Further, every knot is near-Lombardi, that is, it can be drawn as Lombardi drawing when relaxing the angular resolution requirement by an arbitrary small angular offset $\varepsilon$, while maintaining a $180^\circ$ angle between opposite edges.<br />Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017)
- Subjects :
- Computer Science - Computational Geometry
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1708.09819
- Document Type :
- Working Paper