Back to Search
Start Over
The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles
- Publication Year :
- 2017
-
Abstract
- Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster. A rapid decline in the halo profile is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around redMaPPer galaxy clusters in the first year Dark Energy Survey (DES) data. For a cluster sample with mean M_200m mass ~2.5 x 10^14 M_sun, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.13 +/- 0.07 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.34 +/- 0.21 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. For different cluster and galaxy samples, we find that consistent with LCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the redMaPPer algorithm may impact the location of r_sp. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.<br />Comment: 25 pages, 15 figures; update to journal accepted version
- Subjects :
- Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1710.06808
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.3847/1538-4357/aad5e7