Sorry, I don't understand your search. ×
Back to Search Start Over

Anti-Swarming: Structure and Dynamics of Repulsive Chemically Active Particles

Authors :
Yan, Wen
Brady, John F.
Publication Year :
2017

Abstract

Chemically active Brownian particles with surface catalytic reactions may repel each other due to diffusiophoretic interactions in the reaction and product concentration fields. The system behavior can be described by a `chemical' coupling parameter $\Gamma_c$ that compares the strength of diffusiophoretic repulsion to Brownian motion, and by a mapping to the classical electrostatic One Component Plasma (OCP) system. When confined to a constant-volume domain, Body-Centered Cubic crystals spontaneously form from random initial configurations when the repulsion is strong enough to overcome Brownian motion. Face-Centered Cubic crystals may also be stable. The `melting point' of the `liquid-to-crystal transition' occurs at $\Gamma_c\approx140$ for both BCC and FCC lattices.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1711.01446
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevE.96.060601