Back to Search Start Over

Chip-based Brillouin processing for carrier recovery in coherent optical communications

Authors :
Giacoumidis, Elias
Choudhary, Amol
Magi, Eric
Marpaung, David
Vu, Khu
Ma, Pan
Choi, Duk-Yong
Madden, Steve
Corcoran, Bill
Pelusi, Mark
Eggleton, Benjamin J.
Publication Year :
2017

Abstract

Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements.<br />Comment: Part of this work has been presented as a postdealine paper at CLEO Pacific-Rim'2017 and OSA Optica

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1712.03142
Document Type :
Working Paper