Back to Search Start Over

A statistical inference approach to structural reconstruction of complex networks from binary time series

Authors :
Ma, Chuang
Chen, Han-Shuang
Lai, Ying-Cheng
Zhang, Hai-Feng
Publication Year :
2018

Abstract

Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains to be challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum likelihood estimation of the probabilities associated with actual or non-existent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any {\em a priori} knowledge of the detailed dynamical processes, is parameter free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.<br />Comment: 5 figures,accepted by Physical Review E

Subjects

Subjects :
Physics - Physics and Society

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1801.09193
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevE.97.022301