Back to Search Start Over

Spin transport across antiferromagnets induced by the spin Seebeck effect

Authors :
Cramer, Joel
Ritzmann, Ulrike
Dong, Bo-Wen
Jaiswal, Samridh
Qiu, Zhiyong
Saitoh, Eiji
Nowak, Ulrich
Kläui, Mathias
Source :
Journal of Physics D: Applied Physics (2018)
Publication Year :
2018

Abstract

For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport across an antiferromagnet in YIG$|$Ir$_{20}$Mn$_{80}|$Pt heterostructures. We determine the spin transport signals for spin currents generated in the YIG by the spin Seebeck effect and compare to measurements of the spin Hall magnetoresistance in the heterostructure stack. By means of temperature-dependent and thickness-dependent measurements, we deduce conclusions on the spin transport mechanism across IrMn and furthermore correlate it to its paramagnetic-antiferromagnetic phase transition.<br />Comment: 10 pages, 6 figures

Details

Database :
arXiv
Journal :
Journal of Physics D: Applied Physics (2018)
Publication Type :
Report
Accession number :
edsarx.1803.03416
Document Type :
Working Paper
Full Text :
https://doi.org/10.1088/1361-6463/aab223