Back to Search
Start Over
Generalized Stirling Numbers I
- Publication Year :
- 2018
-
Abstract
- We consider generalized Stirling numbers of the second kind $% S_{a,b,r}^{\alpha_{s},\beta_{s},r_{s},p_{s}}\left( p,k\right) $, $% k=0,1,\ldots .rp+\sum_{s=2}^{L}r_{s}p_{s}$, where $a,b,\alpha_{s},\beta_{s} $ are complex numbers, and $r,p,r_{s},p_{s}$ are non-negative integers given, $s=2,\ldots ,L$. (The case $a=1,b=0,r=1,r_{s}p_{s}=0$, corresponds to the standard Stirling numbers $S\left( p,k\right) $.) The numbers $% S_{a,b,r}^{\alpha_{s},\beta_{s},r_{s},p_{s}}\left( p,k\right) $ are connected with a generalization of Eulerian numbers and polynomials we studied in previous works. This link allows us to propose (first, and then to prove, specially in the case $r=r_{s}=1$) several results involving our generalized Stirling numbers, including several families of new recurrences for Stirling numbers of the second kind. In a future work we consider the recurrence and the differential operator associated to the numbers $% S_{a,b,r}^{\alpha_{s},\beta_{s},r_{s},p_{s}}\left( p,k\right) $.
- Subjects :
- Mathematics - Combinatorics
Mathematics - Number Theory
11B73
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1803.05953
- Document Type :
- Working Paper