Back to Search Start Over

Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope

Authors :
Feldman, Paul D.
Weaver, Harold A.
A'Hearn, Michael F.
Combi, Michael R.
Russo, Neil Dello
Source :
The Astronomical Journal, Volume 155, Issue 5, article id. 193, 8 pp. (2018)
Publication Year :
2018

Abstract

Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.5 arcsec diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400 to 1700 A. In the two brightest comets, nineteen bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 A by the Space Telescope Imaging Spectrograph (STIS). The derived CO/H2O production rate ratio ranged from ~0.3% for Hartley 2 to ~22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 A and 1479 A, and of C I at 1561 A and 1657 A, were observed in all four comets. Weak emission from several lines of the H2 Lyman band system, excited by solar Lyman-alpha and Lyman-beta pumped fluorescence, were detected in comet Lovejoy.<br />Comment: 10 pages, 6 figures, accepted for publication in the Astronomical Journal

Details

Database :
arXiv
Journal :
The Astronomical Journal, Volume 155, Issue 5, article id. 193, 8 pp. (2018)
Publication Type :
Report
Accession number :
edsarx.1803.07064
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-3881/aab78a