Back to Search
Start Over
Persistence of antiferromagnetic order upon La substitution in the $4d^4$ Mott insulator Ca$_2$RuO$_4$
- Source :
- Phys. Rev. B 98, 014429 (2018)
- Publication Year :
- 2018
-
Abstract
- The chemical and magnetic structures of the series of compounds Ca$_{2-x}$La$_x$RuO$_4$ [$x = 0$, $0.05(1)$, $0.07(1)$, $0.12(1)$] have been investigated using neutron diffraction and resonant elastic x-ray scattering. Upon La doping, the low temperature S-Pbca space group of the parent compound is retained in all insulating samples [$x\leq0.07(1)$], but with significant changes to the atomic positions within the unit cell. These changes can be characterised in terms of the local RuO$_6$ octahedral coordination: with increasing doping the structure, crudely speaking, evolves from an orthorhombic unit cell with compressed octahedra to a quasi-tetragonal unit cell with elongated ones. The magnetic structure on the other hand, is found to be robust, with the basic $k=(0,0,0)$, $b$-axis antiferromagnetic order of the parent compound preserved below the critical La doping concentration of $x\approx0.11$. The only effects of La doping on the magnetic structure are to suppress the A-centred mode, favouring the B mode instead, and to reduce the N\'{e}el temperature somewhat. Our results are discussed with reference to previous experimental reports on the effects of cation substitution on the $d^4$ Mott insulator Ca$_2$RuO$_4$, as well as with regard to theoretical studies on the evolution of its electronic and magnetic structure. In particular, our results rule out the presence of a proposed ferromagnetic phase, and suggest that the structural effects associated with La substitution play an important role in the physics of the system.<br />Comment: 10 pages, 9 figures
- Subjects :
- Condensed Matter - Strongly Correlated Electrons
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. B 98, 014429 (2018)
- Publication Type :
- Report
- Accession number :
- edsarx.1805.05796
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevB.98.014429