Back to Search Start Over

A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations

Authors :
Mirrahimi, Sepideh
Gandon, Sylvain
Source :
Comptes Rendus Math{\'e}matique, Elsevier Masson, 2016, 355 (2), pp.155 - 160
Publication Year :
2018

Abstract

In this note, we characterize the solution of a system of elliptic integro-differential equations describing a phe-notypically structured population subject to mutation, selection and migration. Generalizing an approach based on Hamilton-Jacobi equations, we identify the dominant terms of the solution when the mutation term is small (but nonzero). This method was initially used, for different problems from evolutionary biology, to identify the asymptotic solutions, while the mutations vanish, as a sum of Dirac masses. A key point is a uniqueness property related to the weak KAM theory. This method allows to go further than the Gaussian approximation commonly used by biologists and is an attempt to fill the gap between the theories of adaptive dynamics and quantitative genetics.<br />Comment: arXiv admin note: substantial text overlap with arXiv:1612.06193

Subjects

Subjects :
Mathematics - Analysis of PDEs

Details

Database :
arXiv
Journal :
Comptes Rendus Math{\'e}matique, Elsevier Masson, 2016, 355 (2), pp.155 - 160
Publication Type :
Report
Accession number :
edsarx.1805.09688
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.crma.2016.12.001