Back to Search Start Over

Learning convex bounds for linear quadratic control policy synthesis

Authors :
Umenberger, Jack
Schön, Thomas B.
Publication Year :
2018

Abstract

Learning to make decisions from observed data in dynamic environments remains a problem of fundamental importance in a number of fields, from artificial intelligence and robotics, to medicine and finance. This paper concerns the problem of learning control policies for unknown linear dynamical systems so as to maximize a quadratic reward function. We present a method to optimize the expected value of the reward over the posterior distribution of the unknown system parameters, given data. The algorithm involves sequential convex programing, and enjoys reliable local convergence and robust stability guarantees. Numerical simulations and stabilization of a real-world inverted pendulum are used to demonstrate the approach, with strong performance and robustness properties observed in both.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1806.00319
Document Type :
Working Paper