Back to Search
Start Over
An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of slightly viscoelastic droplets
- Publication Year :
- 2018
-
Abstract
- We propose an adaptive numerical solver for the study of viscoelastic 2D two-phase flows using the volume-of-fluid method. The scheme uses the robust log conformation tensor technique of Fattal & Kupferman (2004,2005} combined with the time-split scheme proposed by Hao & Pan (2007}. The use of this time-split scheme has been proven to increase the stability of the numerical computation of two-phase flows. We show that the adaptive computational technique can be used to simulate viscoelastic flows efficiently. The solver is coded using the open-source libraries provided by the \basilisk \cite{Basilisk} platform. In particular, the method is implemented for Oldroyd-B type viscoelastic fluids and related models (FENE-P and FENE-CR). The numerical scheme is then used to study the splashing of weakly viscoelastic drops. The solvers and tests of this work are freely available on the Basilisk web site
- Subjects :
- Physics - Fluid Dynamics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1807.00103
- Document Type :
- Working Paper