Back to Search Start Over

Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation

Authors :
Luo, Yixin
Ghose, Saugata
Cai, Yu
Haratsch, Erich F.
Mutlu, Onur
Publication Year :
2018

Abstract

Compared to planar (i.e., two-dimensional) NAND flash memory, 3D NAND flash memory uses a new flash cell design, and vertically stacks dozens of silicon layers in a single chip. This allows 3D NAND flash memory to increase storage density using a much less aggressive manufacturing process technology than planar NAND flash memory. The circuit-level and structural changes in 3D NAND flash memory significantly alter how different error sources affect the reliability of the memory. In this paper, through experimental characterization of real, state-of-the-art 3D NAND flash memory chips, we find that 3D NAND flash memory exhibits three new error sources that were not previously observed in planar NAND flash memory: (1) layer-to-layer process variation, where the average error rate of each 3D-stacked layer in a chip is significantly different; (2) early retention loss, a new phenomenon where the number of errors due to charge leakage increases quickly within several hours after programming; and (3) retention interference, a new phenomenon where the rate at which charge leaks from a flash cell is dependent on the data value stored in the neighboring cell. Based on our experimental results, we develop new analytical models of layer-to-layer process variation and retention loss in 3D NAND flash memory. Motivated by our new findings and models, we develop four new techniques to mitigate process variation and early retention loss in 3D NAND flash memory. These four techniques are complementary, and can be combined together to significantly improve flash memory reliability. Compared to a state-of-the-art baseline, our techniques, when combined, improve flash memory lifetime by 1.85x. Alternatively, if a NAND flash vendor wants to keep the lifetime of the 3D NAND flash memory device constant, our techniques reduce the storage overhead required to hold error correction information by 78.9%.<br />Comment: presented at SIGMETRICS 2018

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1807.05140
Document Type :
Working Paper