Back to Search Start Over

Model Predictive Control for Regular Linear Systems

Authors :
Dubljevic, Stevan
Humaloja, Jukka-Pekka
Publication Year :
2018

Abstract

The present work extends known finite-dimensional constrained optimal control realizations to the realm of well-posed regular linear infinite-dimensional systems modelled by partial differential equations. The structure-preserving Cayley-Tustin transformation is utilized to approximate the continuous-time system by a discrete-time model representation without using any spatial discretization or model reduction. The discrete-time model is utilized in the design of model predictive controller accounting for optimality, stabilization, and input and output/state constraints in an explicit way. The proposed model predictive controller is dual-mode in the sense that predictive controller steers the state to a set where exponentially stabilizing unconstrained feedback can be utilized without violating the constraints. The construction of the model predictive controller leads to a finite-dimensional constrained quadratic optimization problem easily solvable by standard numerical methods. Two representative examples of partial differential equations are considered.<br />Comment: 19 pages, 4 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1808.10021
Document Type :
Working Paper