Back to Search Start Over

Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem

Authors :
Bingane, Christian
Anjos, Miguel F.
Digabel, Sébastien Le
Source :
IEEE Transactions on Power Systems, 34(6): 4684-4693, 2019
Publication Year :
2018

Abstract

The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, which is highly nonconvex and generally hard to solve. Recently, convex relaxations of the ACOPF problem have attracted a significant interest since they can lead to global optimality. We propose a tight conic relaxation of the ORPD problem and show that a round-off technique applied with this relaxation leads to near-global optimal solutions with very small guaranteed optimality gaps, unlike with the nonconvex continuous relaxation. We report computational results on selected MATPOWER test cases with up to 3375 buses.

Details

Database :
arXiv
Journal :
IEEE Transactions on Power Systems, 34(6): 4684-4693, 2019
Publication Type :
Report
Accession number :
edsarx.1810.03040
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TPWRS.2019.2912889