Back to Search Start Over

DGC-Net: Dense Geometric Correspondence Network

Authors :
Melekhov, Iaroslav
Tiulpin, Aleksei
Sattler, Torsten
Pollefeys, Marc
Rahtu, Esa
Kannala, Juho
Publication Year :
2018

Abstract

This paper addresses the challenge of dense pixel correspondence estimation between two images. This problem is closely related to optical flow estimation task where ConvNets (CNNs) have recently achieved significant progress. While optical flow methods produce very accurate results for the small pixel translation and limited appearance variation scenarios, they hardly deal with the strong geometric transformations that we consider in this work. In this paper, we propose a coarse-to-fine CNN-based framework that can leverage the advantages of optical flow approaches and extend them to the case of large transformations providing dense and subpixel accurate estimates. It is trained on synthetic transformations and demonstrates very good performance to unseen, realistic, data. Further, we apply our method to the problem of relative camera pose estimation and demonstrate that the model outperforms existing dense approaches.<br />Comment: Supplementary material included; Affiliation section has been changed

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1810.08393
Document Type :
Working Paper