Sorry, I don't understand your search. ×
Back to Search Start Over

Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation

Authors :
Li, Jing
Mantiuk, Rafal K.
Wang, Junle
Ling, Suiyi
Callet, Patrick Le
Publication Year :
2018

Abstract

In this paper we present a hybrid active sampling strategy for pairwise preference aggregation, which aims at recovering the underlying rating of the test candidates from sparse and noisy pairwise labelling. Our method employs Bayesian optimization framework and Bradley-Terry model to construct the utility function, then to obtain the Expected Information Gain (EIG) of each pair. For computational efficiency, Gaussian-Hermite quadrature is used for estimation of EIG. In this work, a hybrid active sampling strategy is proposed, either using Global Maximum (GM) EIG sampling or Minimum Spanning Tree (MST) sampling in each trial, which is determined by the test budget. The proposed method has been validated on both simulated and real-world datasets, where it shows higher preference aggregation ability than the state-of-the-art methods.<br />Comment: NIPS 2018

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1810.08851
Document Type :
Working Paper