Back to Search
Start Over
Numerical radius parallelism of Hilbert space operators
- Publication Year :
- 2018
-
Abstract
- In this paper, we introduce a new type of parallelism for bounded linear operators on a Hilbert space $\big(\mathscr{H}, \langle \cdot ,\cdot \rangle\big)$ based on numerical radius. More precisely, we consider operators $T$ and $S$ which satisfy $\omega(T + \lambda S) = \omega(T)+\omega(S)$ for some complex unit $\lambda$. We show that $T \parallel_{\omega} S$ if and only if there exists a sequence of unit vectors $\{x_n\}$ in $\mathscr{H}$ such that \begin{align*} \lim_{n\rightarrow\infty} \big|\langle Tx_n, x_n\rangle\langle Sx_n, x_n\rangle\big| = \omega(T)\omega(S). \end{align*} We then apply it to give some applications.
- Subjects :
- Mathematics - Functional Analysis
46B20, 47L05, 47A12
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1810.10445
- Document Type :
- Working Paper