Back to Search Start Over

Transform-limited photons from a coherent tin-vacancy spin in diamond

Authors :
Trusheim, Matthew E.
Pingault, Benjamin
Wan, Noel H
Gundogan, Mustafa
De Santis, Lorenzo
Debroux, Romain
Gangloff, Dorian
Purser, Carola
Chen, Kevin C.
Walsh, Michael
Rose, Joshua J.
Becker, Jonas N.
Lienhard, Benjamin
Bersin, Eric
Paradeisanos, Ioannis
Wang, Gang
Lyzwa, Dominika
Montblanch, Alejandro R-P.
Malladi, Girish
Bakhru, Hassaram
Ferrari, Andrea C.
Walmsley, Ian
Atature, Mete
Englund, Dirk
Source :
Phys. Rev. Lett. 124, 023602 (2020)
Publication Year :
2018

Abstract

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phononlimited with an exponential temperature scaling leading to $T_1$ $>$ 10 ms, and the coherence time, $T_2$ reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.<br />Comment: 6 pages, 4 figures

Details

Database :
arXiv
Journal :
Phys. Rev. Lett. 124, 023602 (2020)
Publication Type :
Report
Accession number :
edsarx.1811.07777
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevLett.124.023602