Back to Search
Start Over
Learning Vine Copula Models For Synthetic Data Generation
- Publication Year :
- 2018
-
Abstract
- A vine copula model is a flexible high-dimensional dependence model which uses only bivariate building blocks. However, the number of possible configurations of a vine copula grows exponentially as the number of variables increases, making model selection a major challenge in development. In this work, we formulate a vine structure learning problem with both vector and reinforcement learning representation. We use neural network to find the embeddings for the best possible vine model and generate a structure. Throughout experiments on synthetic and real-world datasets, we show that our proposed approach fits the data better in terms of log-likelihood. Moreover, we demonstrate that the model is able to generate high-quality samples in a variety of applications, making it a good candidate for synthetic data generation.
- Subjects :
- Computer Science - Machine Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1812.01226
- Document Type :
- Working Paper