Back to Search Start Over

Exact normalized eigenfunctions for general deformed Hulth\'en potentials

Authors :
Hall, Richard L.
Saad, Nasser
Sen, K. D.
Publication Year :
2018

Abstract

The exact solutions of Schr\"odinger's equation with the deformed Hulth\'en potential $V_q(x)=-{\mu\, e^{-\delta\,x }}/({1-q\,e^{-\delta\,x}}),~ \delta,\mu, q>0$ are given, along with a closed--form formula for the normalization constants of the eigenfunctions for arbitrary $q>0$. The Crum-Darboux transformation is then used to derive the corresponding exact solutions for the extended Hulth\'en potentials $V(x)= -{\mu\, e^{-\delta\,x }}/({1-q\,e^{-\delta\,x}})+ {q\,j(j+1)\, e^{-\delta\,x }}/({1-q\,e^{-\delta\,x}})^2, j=0,1,2,\dots.$ A general formula for the new normalization condition is also provided.<br />Comment: 14 pages, two figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1812.06383
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/1.5043484