Back to Search
Start Over
Exact normalized eigenfunctions for general deformed Hulth\'en potentials
- Publication Year :
- 2018
-
Abstract
- The exact solutions of Schr\"odinger's equation with the deformed Hulth\'en potential $V_q(x)=-{\mu\, e^{-\delta\,x }}/({1-q\,e^{-\delta\,x}}),~ \delta,\mu, q>0$ are given, along with a closed--form formula for the normalization constants of the eigenfunctions for arbitrary $q>0$. The Crum-Darboux transformation is then used to derive the corresponding exact solutions for the extended Hulth\'en potentials $V(x)= -{\mu\, e^{-\delta\,x }}/({1-q\,e^{-\delta\,x}})+ {q\,j(j+1)\, e^{-\delta\,x }}/({1-q\,e^{-\delta\,x}})^2, j=0,1,2,\dots.$ A general formula for the new normalization condition is also provided.<br />Comment: 14 pages, two figures
- Subjects :
- Mathematical Physics
Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1812.06383
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1063/1.5043484