Back to Search
Start Over
A local search $4/3$-approximation algorithm for the minimum $3$-path partition problem
- Publication Year :
- 2018
-
Abstract
- Given a graph $G = (V, E)$, the $3$-path partition problem is to find a minimum collection of vertex-disjoint paths each of order at most $3$ to cover all the vertices of $V$. It is different from but closely related to the well-known $3$-set cover problem. The best known approximation algorithm for the $3$-path partition problem was proposed recently and has a ratio $13/9$. Here we present a local search algorithm and show, by an amortized analysis, that it is a $4/3$-approximation. This ratio matches up to the best approximation ratio for the $3$-set cover problem.<br />Comment: 16 pages, 21 figures
- Subjects :
- Computer Science - Data Structures and Algorithms
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1812.09353
- Document Type :
- Working Paper