Back to Search Start Over

Spectroscopy of odd-odd nuclei within the interacting boson-fermion-fermion model based on the Gogny energy density functional

Authors :
Nomura, K.
Rodríguez-Guzmán, R.
Robledo, L. M.
Source :
Phys. Rev. C 99, 034308 (2019)
Publication Year :
2018

Abstract

We present a method to calculate spectroscopic properties of odd-odd nuclei within the framework of the Interacting Boson-Fermion-Fermion Model based on the Gogny energy density functional. The $(\beta,\gamma)$-deformation energy surface of the even-even (boson-)core nucleus, spherical single-particle energies and occupation probabilities of the odd neutron and odd proton, are provided by the constrained self-consistent mean-field calculation within the Hartree-Fock-Bogoliubov method with the Gogny-D1M functional. These quantities are used as a microscopic input to fix most of the parameters of the IBFFM Hamiltonian. Only a few coupling constants for the boson-fermion Hamiltonian and the residual neutron-proton interaction are specifically adjusted to reproduce experimental low-energy spectra in odd-mass and odd-odd nuclei, respectively. In this way, the number of free parameters involved in the IBFFM framework is reduced significantly. The method is successfully applied to the description of the low-energy spectra and electromagnetic transition rates in the odd-odd $^{194,196,198}$Au nuclei.<br />Comment: 11 pages, 5 figures, 9 tables

Subjects

Subjects :
Nuclear Theory
Nuclear Experiment

Details

Database :
arXiv
Journal :
Phys. Rev. C 99, 034308 (2019)
Publication Type :
Report
Accession number :
edsarx.1812.10174
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevC.99.034308