Back to Search Start Over

Swarm coordination of mini-UAVs for target search using imperfect sensors

Authors :
Alfeo, A. L.
Cimino, M. G. C. A.
De Francesco, N.
Lazzeri, A.
Lega, M.
Vaglini, G.
Source :
Intelligent Decision Technologies, IOS Press, Vol. 12, Issue 2, Pages 149-162, 2018
Publication Year :
2019

Abstract

Unmanned Aerial Vehicles (UAVs) have a great potential to support search tasks in unstructured environments. Small, lightweight, low speed and agile UAVs, such as multi-rotors platforms can incorporate many kinds of sensors that are suitable for detecting object of interests in cluttered outdoor areas. However, due to their limited endurance, moderate computing power, and imperfect sensing, mini-UAVs should be into groups using swarm coordination algorithms to perform tasks in a scalable, reliable and robust manner. In this paper a biologically-inspired mechanisms is adopted to coordinate drones performing target search with imperfect sensors. In essence, coordination can be achieved by combining stigmergic and flocking behaviors. Stigmergy occurs when a drone releases digital pheromone upon sensing of a potential target. Such pheromones can be aggregated and diffused between flocking drones, creating a spatiotemporal attractive potential field. Flocking occurs, as an emergent effect of alignment, separation and cohesion, where drones self organise with similar heading and dynamic arrangement as a group. The emergent coordination of drones relies on the alignment of stigmergy and flocking strategies. This paper reports on the design of the novel swarming algorithm, reviewing different strategies and measuring their performance on a number of synthetic and real-world scenarios.

Details

Database :
arXiv
Journal :
Intelligent Decision Technologies, IOS Press, Vol. 12, Issue 2, Pages 149-162, 2018
Publication Type :
Report
Accession number :
edsarx.1901.02885
Document Type :
Working Paper
Full Text :
https://doi.org/10.3233/IDT-170317