Back to Search
Start Over
The Number of Convex Polyominoes with Given Height and Width
- Publication Year :
- 2019
-
Abstract
- We give a new combinatorial proof for the number of convex polyominoes whose minimum enclosing rectangle has given dimensions. We also count the subclass of these polyominoes that contain the lower left corner of the enclosing rectangle (directed polyominoes). We indicate how to sample random polyominoes in these classes. As a side result, we calculate the first and second moments of the number of common points of two monotone lattice paths between two given points.<br />Comment: 18 pages, 8 figures
- Subjects :
- Mathematics - Combinatorics
05B50 (Primary) 05A10 (Secondary)
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1903.01095
- Document Type :
- Working Paper