Back to Search Start Over

Local-hidden-state models for T-states using finite shared randomness

Authors :
Zhang, Yuan-Yuan
Zhang, Fu-Lin
Source :
EPL, 127 (2019) 20007
Publication Year :
2019

Abstract

The study of local models using finite shared randomness originates from the consideration about the cost of classically simulating entanglement in composite quantum systems. We construct explicitly two families of local-hidden-state (LHS) models for T-states, by mapping the problem to the Werner state. The continuous decreasing of shared randomness along with entanglement, as the anisotropy increases, can be observed in the one from the most economical model for the Werner state. The construction of the one for separable states shows that the separable boundary of T-states can be generated from the one of the Werner state, and the cost is 2 classical bits.<br />Comment: 6 pages, 4 figures

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Journal :
EPL, 127 (2019) 20007
Publication Type :
Report
Accession number :
edsarx.1903.03957
Document Type :
Working Paper
Full Text :
https://doi.org/10.1209/0295-5075/127/20007