Back to Search Start Over

Finite TYCZ expansions and cscK metrics

Authors :
Loi, A.
Mossa, R.
Zuddas, F.
Source :
J. Math. Anal. Appl. 484 (2020), no. 1, 123715, 20 pp
Publication Year :
2019

Abstract

Let $(M, g)$ be a Kaehler manifold whose associated Kaehler form $\omega$ is integral and let $(L, h)\rightarrow (M, \omega)$ be a quantization hermitian line bundle. In this paper we study those Kaehler manifolds $(M, g)$ admitting a finite TYCZ expansion. We show that if the TYCZ expansion is finite then $T_{mg}$ is indeed a polynomial in $m$ of degree $n$, $n=dim M$, and the log-term of the Szeg\"{o} kernel of the disc bundle $D\subset L^*$ vanishes (where $L^*$ is the dual bundle of $L$). Moreover, we provide a complete classification of the Kaehler manifolds admitting finite TYCZ expansion either when $M$ is a complex curve or when $M$ is a complex surface with a cscK metric which admits a radial Kaehler potential.

Details

Database :
arXiv
Journal :
J. Math. Anal. Appl. 484 (2020), no. 1, 123715, 20 pp
Publication Type :
Report
Accession number :
edsarx.1903.07679
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.jmaa.2019.123715