Back to Search Start Over

Nonsequenceable Steiner triple systems

Authors :
Kreher, Donald L.
Stinson, Douglas R.
Publication Year :
2019

Abstract

A partial Steiner triple system is is $sequenceable$ if the points can be sequenced so that no proper segment can be partitioned into blocks. We show that, if $0 \leq a \leq (n-1)/3$, then there exists a nonsequenceable PSTS$(n)$ of size $\frac{1}{3}\binom{n}{2}-a$, for all $n \equiv 1 \pmod{6}$ except for $n=7$.

Subjects

Subjects :
Mathematics - Combinatorics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1903.08719
Document Type :
Working Paper