Back to Search Start Over

Embedded nonlinear model predictive control for obstacle avoidance using PANOC

Authors :
Sathya, Ajay
Sopasakis, Pantelis
Van Parys, Ruben
Themelis, Andreas
Pipeleers, Goele
Patrinos, Panagiotis
Source :
European Control Conference (ECC'18), pp.1523-1528, Cyprus, 2018
Publication Year :
2019

Abstract

We employ the proximal averaged Newton-type method for optimal control (PANOC) to solve obstacle avoidance problems in real time. We introduce a novel modeling framework for obstacle avoidance which allows us to easily account for generic, possibly nonconvex, obstacles involving polytopes, ellipsoids, semialgebraic sets and generic sets described by a set of nonlinear inequalities. PANOC is particularly well-suited for embedded applications as it involves simple steps, its implementation comes with a low memory footprint and its fast convergence meets the tight runtime requirements of fast dynamical systems one encounters in modern mechatronics and robotics. The proposed obstacle avoidance scheme is tested on a lab-scale autonomous vehicle.

Details

Database :
arXiv
Journal :
European Control Conference (ECC'18), pp.1523-1528, Cyprus, 2018
Publication Type :
Report
Accession number :
edsarx.1904.10546
Document Type :
Working Paper
Full Text :
https://doi.org/10.23919/ECC.2018.8550253