Back to Search
Start Over
On Hyperbolic Polynomials and Four-term Recurrence with Linear Coefficients
- Publication Year :
- 2019
-
Abstract
- For any real numbers $a,\ b$, and $c$, we form the sequence of polynomials $\{P_n(z)\}_{n=0}^\infty$ satisfying the four-term recurrence \[ P_n(z)+azP_{n-1}(z)+bP_{n-2}(z)+czP_{n-3}(z)=0,\ n\in\mathbb{N}, \] with the initial conditions $P_0(z)=1$ and $P_{-n}(z)=0$. We find necessary and sufficient conditions on $a,\ b$, and $c$ under which the zeros of $P_n(z)$ are real for all $n$, and provide an explicit real interval on which $\displaystyle\bigcup_{n=0}^\infty\mathcal{Z}(P_n)$ is dense, where $\mathcal{Z}(P_n)$ is the set of zeros of $P_n(z)$.
- Subjects :
- Mathematics - Complex Variables
Mathematics - Classical Analysis and ODEs
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1904.12455
- Document Type :
- Working Paper