Back to Search
Start Over
Certification of spin-based quantum simulators
- Source :
- Phys. Rev. A 101, 052344 (2020)
- Publication Year :
- 2019
-
Abstract
- Quantum simulators are engineered devices controllably designed to emulate complex and classically intractable quantum systems. A key challenge is to certify whether the simulator truly mimics the Hamiltonian of interest. This certification step requires the comparison of a simulator's output to a known answer, which is usually limited to small systems due to the exponential scaling of the Hilbert space. Here, in the context of Fermi-Hubbard spin-based analogue simulators, we propose a modular many-body spin to charge conversion scheme that scales linearly with both the system size and the number of low-energy eigenstates to discriminate. Our protocol is based on the global charge state measurement of a 1D spin chain performed at different detuning potentials along the chain. In the context of semiconductor-based systems, we identify realistic conditions for detuning the chain adiabatically in order to avoid state mixing while preserving charge coherence. Large simulators with vanishing energy gaps, including 2D arrays, can be certified block-by-block with a number of measurements scaling only linearly with the system size.<br />Comment: 9 pages, 9 figures
- Subjects :
- Quantum Physics
Condensed Matter - Strongly Correlated Electrons
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. A 101, 052344 (2020)
- Publication Type :
- Report
- Accession number :
- edsarx.1905.01724
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevA.101.052344