Back to Search
Start Over
Optical spin locking of a solid-state qubit
- Source :
- Quantum Inf 5, 95 (2019)
- Publication Year :
- 2019
-
Abstract
- Quantum control of solid-state spin qubits typically involves pulses in the microwave domain, drawing from the well-developed toolbox of magnetic resonance spectroscopy. Driving a solid-state spin by optical means offers a high-speed alternative, which in the presence of limited spin coherence makes it the preferred approach for high-fidelity quantum control. Bringing the full versatility of magnetic spin resonance to the optical domain requires full phase and amplitude control of the optical fields. Here, we imprint a programmable microwave sequence onto a laser field and perform electron spin resonance in a semiconductor quantum dot via a two-photon Raman process. We show that this approach yields full SU(2) spin control with over 98% pi-rotation fidelity. We then demonstrate its versatility by implementing a particular multi-axis control sequence, known as spin locking. Combined with electron-nuclear Hartmann-Hahn resonances which we also report in this work, this sequence will enable efficient coherent transfer of a quantum state from the electron spin to the mesoscopic nuclear ensemble.<br />Comment: 11 pages, 10 figures
- Subjects :
- Quantum Physics
Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Quantum Inf 5, 95 (2019)
- Publication Type :
- Report
- Accession number :
- edsarx.1906.00427
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1038/s41534-019-0206-3