Back to Search Start Over

On a problem of De Koninck

Authors :
Yamada, Tomohiro
Source :
Moscow J. Comb. Number Th. 10 (2021) 249-260
Publication Year :
2019

Abstract

Let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of $n$ respectively. We shall show that, if $n\neq 1, 1782$ and $\sigma(n)=(\gamma(n))^2$, then there exist odd (not necessarily distinct) primes $p, p^\prime$ and (not necessarily odd) distinct primes $q_i (i=1, 2, \ldots, k)$ such that $p, p^\prime\mid\mid n$, $q_i^2\mid\mid n (i=1, 2, \ldots, k)$ and $q_1\mid \sigma(p^2), q_{i+1}\mid\sigma(q_i^2) (1\leq i\leq k-1), p^\prime \mid\sigma(q_k^2)$.<br />Comment: 15 pages, the author's final version, address changed due to the location change of the Minoh Campus of Osaka University, to appear in Moscow J. Combin. Number Theory

Details

Database :
arXiv
Journal :
Moscow J. Comb. Number Th. 10 (2021) 249-260
Publication Type :
Report
Accession number :
edsarx.1906.10001
Document Type :
Working Paper
Full Text :
https://doi.org/10.2140/moscow.2021.10.249