Back to Search
Start Over
On a problem of De Koninck
- Source :
- Moscow J. Comb. Number Th. 10 (2021) 249-260
- Publication Year :
- 2019
-
Abstract
- Let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of $n$ respectively. We shall show that, if $n\neq 1, 1782$ and $\sigma(n)=(\gamma(n))^2$, then there exist odd (not necessarily distinct) primes $p, p^\prime$ and (not necessarily odd) distinct primes $q_i (i=1, 2, \ldots, k)$ such that $p, p^\prime\mid\mid n$, $q_i^2\mid\mid n (i=1, 2, \ldots, k)$ and $q_1\mid \sigma(p^2), q_{i+1}\mid\sigma(q_i^2) (1\leq i\leq k-1), p^\prime \mid\sigma(q_k^2)$.<br />Comment: 15 pages, the author's final version, address changed due to the location change of the Minoh Campus of Osaka University, to appear in Moscow J. Combin. Number Theory
- Subjects :
- Mathematics - Number Theory
Mathematics - Combinatorics
05C20, 11A05, 11A25, 11A41
Subjects
Details
- Database :
- arXiv
- Journal :
- Moscow J. Comb. Number Th. 10 (2021) 249-260
- Publication Type :
- Report
- Accession number :
- edsarx.1906.10001
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.2140/moscow.2021.10.249