Back to Search
Start Over
Simultaneously vanishing higher derived limits
- Source :
- Forum of Mathematics, Pi 9 (2021) e4
- Publication Year :
- 2019
-
Abstract
- In 1988, Sibe Marde\v{s}i\'{c} and Andrei Prasolov isolated an inverse system $\mathbf{A}$ with the property that the additivity of strong homology on any class of spaces which includes the closed subsets of Euclidean space would entail that $\lim^n\mathbf{A}$ (the $n^{\text{th}}$ derived limit of $\mathbf{A}$) vanishes for every $n >0$. Since that time, the question of whether it is consistent with the $\mathsf{ZFC}$ axioms that $\lim^n \mathbf{A}=0$ for every $n >0$ has remained open. It remains possible as well that this condition in fact implies that strong homology is additive on the category of metric spaces. We show that, assuming the existence of a weakly compact cardinal, it is indeed consistent with the $\mathsf{ZFC}$ axioms that $\lim^n \mathbf{A}=0$ for all $n >0$. We show this via a finite support iteration of Hechler forcings which is of weakly compact length. More precisely, we show that in any forcing extension by this iteration a condition equivalent to $\lim^n\mathbf{A}=0$ will hold for each $n>0$. This condition is of interest in its own right; namely, it is the triviality of every coherent $n$-dimensional family of certain specified sorts of partial functions $\mathbb{N}^2\to\mathbb{Z}$ which are indexed in turn by $n$-tuples of functions $f:\mathbb{N}\to\mathbb{N}$. The triviality and coherence in question here generalize the well-studied case of $n=1$.<br />Comment: 35 pages. Accepted to Forum of Mathematics: Pi
Details
- Database :
- arXiv
- Journal :
- Forum of Mathematics, Pi 9 (2021) e4
- Publication Type :
- Report
- Accession number :
- edsarx.1907.11744
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1017/fmp.2021.4