Back to Search Start Over

Detection of Propadiene on Titan

Authors :
Lombardo, Nicholas A
Nixon, Conor A
Greathouse, Thomas K
Bézard, Bruno
Jolly, Antoine
Vinatier, Sandrine
Teanby, Nicholas A
Richter, Matthew J
Irwin, Patrick J G
Coustenis, Athena
Flasar, F Michael
Source :
The Astrophysical Journal Letters, 881:L33 (6pp), 2019 August 20
Publication Year :
2019

Abstract

The atmosphere of Titan, the largest moon of Saturn, is rich in organic molecules, and it has been suggested that the moon may serve as an analog for the pre-biotic Earth due to its highly reducing chemistry and existence of global hazes. Photochemical models of Titan have predicted the presence of propadiene (historically referred to as allene), CH$_{2}$CCH$_{2}$, an isomer of the well-measured propyne (also called methylacetylene) CH$_{3}$CCH, but its detection has remained elusive due to insufficient spectroscopic knowledge of the molecule - which has recently been remedied with an updated spectral line list. Here we present the first unambiguous detection of the molecule in any astronomical object, observed with the Texas Echelle Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility (IRTF) in July 2017. We model its emission line near 12 $\mu$m and measure a volume mixing ratio (VMR) of (6.9 $\pm$ 0.8) $\times$10$^{-10}$ at 175 km, assuming a vertically increasing abundance profile as predicted in photochemical models. Cassini measurements of propyne made during April 2017 indicate that the abundance ratio of propyne to propadiene is 8.2$\pm$1.1 at the same altitude. This initial measurement of the molecule in Titan's stratosphere paves the way towards constraining the amount of atomic hydrogen available on Titan, as well as future mapping of propadiene on Titan from 8 meter and larger ground based observatories, and future detection on other planetary bodies.

Details

Database :
arXiv
Journal :
The Astrophysical Journal Letters, 881:L33 (6pp), 2019 August 20
Publication Type :
Report
Accession number :
edsarx.1908.07424
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/2041-8213/ab3860