Back to Search Start Over

Solar Active Region Heating Diagnostics from High Temperature Emission using the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

Authors :
Athiray, P. S.
Winebarger, Amy R.
Barnes, Will T.
Bradshaw, Stephen J.
Savage, Sabrina
Warren, Harry P.
Kobayashi, Ken
Champey, Patrick
Golub, Leon
Glesener, Lindsay
Source :
The Astrophysical Journal, 2019, 884 24
Publication Year :
2019

Abstract

The relative amount of high temperature plasma has been found to be a useful diagnostic to determine the frequency of coronal heating on sub-resolution structures. When the loops are infrequently heated, a broad emission measure (EM) over a wider range of temperatures is expected. A narrower EM is expected for high frequency heating where the loops are closer to equilibrium. The soft X-ray spectrum contains many spectral lines that provide high temperature diagnostics, including lines from Fe XVII-XIX. This region of the solar spectrum will be observed by the Marshall Grazing Incidence Spectrometer (MaGIXS) in 2020. In this paper, we derive the expected spectral lines intensity in MaGIXS to varying amounts of high temperature plasma to demonstrate that a simple line ratio of these provides a powerful diagnostic to determine the heating frequency. Similarly, we examine ratios of AIA channel intensities, filter ratios from a XRT, and energy bands from the FOXSI sounding rocket to determine their sensitivity to this parameter. We find that both FOXSI and MaGIXS provide good diagnostic capability for high-temperature plasma. We then compare the predicted line ratios to the output of a numerical model and confirm the MaGIXS ratios provide an excellent diagnostic for heating frequency.<br />Comment: Accepted for publication in ApJ

Details

Database :
arXiv
Journal :
The Astrophysical Journal, 2019, 884 24
Publication Type :
Report
Accession number :
edsarx.1909.02541
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4357/ab3eb4