Back to Search Start Over

Dynamic Bandstructure and Capacitance Effects in Scanning Tunneling Spectroscopy of Bilayer Graphene

Authors :
Holdman, Gregory R.
Krebs, Zachary J.
Behn, Wyatt A.
Smith, Keenan J.
Watanabe, K.
Taniguchi, T.
Brar, Victor W.
Publication Year :
2019

Abstract

We develop a fully self-consistent model to describe scanning tunneling spectroscopy (STS) measurements of Bernal-stacked bilayer graphene (BLG), and we compare the results of our model to experimental measurements. Our results show that the STS tip acts as a top gate that changes the BLG bandstructure and Fermi level, while simultaneously probing the voltage-dependent tunneling density of states (TDOS). These effects lead to differences between the TDOS and the local density of states (LDOS); in particular, we show that the bandgap of the BLG appears larger than expected in STS measurements, that an additional feature appears in the TDOS that is an artifact of the STS measurement, and that asymmetric charge distribution effects between the individual graphene layers are observable via STS.<br />Comment: 5 pages, 4 figures. The following article has been submitted to Applied Physics Letters. Updated funding information in 2nd version

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1909.04280
Document Type :
Working Paper
Full Text :
https://doi.org/10.1063/1.5127078