Back to Search
Start Over
Enumerating extensions of mutually orthogonal Latin squares
- Publication Year :
- 2019
-
Abstract
- Two $n \times n$ Latin squares $L_1, L_2$ are said to be orthogonal if, for every ordered pair $(x,y)$ of symbols, there are coordinates $(i,j)$ such that $L_1(i,j) = x$ and $L_2(i,j) = y$. A $k$-MOLS is a sequence of $k$ pairwise-orthogonal Latin squares, and the existence and enumeration of these objects has attracted a great deal of attention. Recent work of Keevash and Luria provides, for all fixed $k$, log-asymptotically tight bounds on the number of $k$-MOLS. To study the situation when $k$ grows with $n$, we bound the number of ways a $k$-MOLS can be extended to a $(k+1)$-MOLS. These bounds are again tight for constant $k$, and allow us to deduce upper bounds on the total number of $k$-MOLS for all $k$. These bounds are close to tight even for $k$ linear in $n$, and readily generalize to the broader class of gerechte designs, which include Sudoku squares.<br />Comment: 18 pages
- Subjects :
- Mathematics - Combinatorics
05B15
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1910.02753
- Document Type :
- Working Paper