Back to Search
Start Over
Hybrid Sparse Array Beamforming Design for General Rank Signal Models
- Publication Year :
- 2019
-
Abstract
- The paper considers sparse array design for receive beamforming achieving maximum signal-to-interference plus noise ratio (MaxSINR) for both single point source and multiple point sources, operating in an interference active environment. Unlike existing sparse design methods which either deal with structured environment-independent or non-structured environment-dependent arrays, our method is a hybrid approach and seeks a full augumentable array that optimizes beamformer performance. This approach proves important for limited aperture that constrains the number of possible uniform grid points for sensor placements. The problem is formulated as quadratically constraint quadratic program (QCQP), with the cost function penalized with weighted l_1-norm squared of the beamformer weight vector. Simulation results are presented to show the effectiveness of the proposed algorithms for array configurability in the case of both single and general rank signal correlation matrices. Performance comparisons among the proposed sparse array, the commonly used uniform arrays, arrays obtained by other design methods, and arrays designed without the augmentability constraint are provided.
- Subjects :
- Electrical Engineering and Systems Science - Signal Processing
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1910.03095
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1109/TSP.2019.2952052