Back to Search Start Over

Quantifying Suspiciousness Within Correlated Data Sets

Authors :
Lemos, Pablo
Köhlinger, Fabian
Handley, Will
Joachimi, Benjamin
Whiteway, Lorne
Lahav, Ofer
Publication Year :
2019

Abstract

We propose a principled Bayesian method for quantifying tension between correlated datasets with wide uninformative parameter priors. This is achieved by extending the Suspiciousness statistic, which is insensitive to priors. Our method uses global summary statistics, and as such it can be used as a diagnostic for internal consistency. We show how our approach can be combined with methods that use parameter space and data space to identify the existing internal discrepancies. As an example, we use it to test the internal consistency of the KiDS-450 data in 4 photometric redshift bins, and to recover controlled internal discrepancies in simulated KiDS data. We propose this as a diagnostic of internal consistency for present and future cosmological surveys, and as a tension metric for data sets that have non-negligible correlation, such as LSST and Euclid.<br />Comment: 7 pages, 4 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1910.07820
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/staa1836