Back to Search Start Over

Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings

Authors :
Doskoč, Vanja
Friedrich, Tobias
Göbel, Andreas
Neumann, Frank
Neumann, Aneta
Quinzan, Francesco
Publication Year :
2019

Abstract

We study the problem of maximizing a non-monotone submodular function under multiple knapsack constraints. We propose a simple discrete greedy algorithm to approach this problem, and prove that it yields strong approximation guarantees for functions with bounded curvature. In contrast to other heuristics, this requires no problem relaxation to continuous domains and it maintains a constant-factor approximation guarantee in the problem size. In the case of a single knapsack, our analysis suggests that the standard greedy can be used in non-monotone settings. Additionally, we study this problem in a dynamic setting, by which knapsacks change during the optimization process. We modify our greedy algorithm to avoid a complete restart at each constraint update. This modification retains the approximation guarantees of the static case. We evaluate our results experimentally on a video summarization and sensor placement task. We show that our proposed algorithm competes with the state-of-the-art in static settings. Furthermore, we show that in dynamic settings with tight computational time budget, our modified greedy yields significant improvements over starting the greedy from scratch, in terms of the solution quality achieved.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1911.06791
Document Type :
Working Paper