Back to Search
Start Over
Geometric analysis of Oscillations in the Frzilator model
- Publication Year :
- 2019
-
Abstract
- A biochemical oscillator model, describing developmental stage of myxobacteria, is analyzed mathematically. Observations from numerical simulations show that in a certain range of parameters, the corresponding system of ordinary differential equations displays stable and robust oscillations. In this work, we use geometric singular perturbation theory and blow-up method to prove the existence of a strongly attracting limit cycle. This cycle corresponds to a relaxation oscillation of an auxiliary system, whose singular perturbation nature originates from the small Michaelis-Menten constants of the biochemical model. In addition, we give a detailed description of the structure of the limit cycle, and the timescales along it.<br />Comment: 38 pages
- Subjects :
- Mathematics - Dynamical Systems
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1912.00659
- Document Type :
- Working Paper