Back to Search Start Over

Identifying Adversarial Sentences by Analyzing Text Complexity

Authors :
Nguyen-Son, Hoang-Quoc
Thao, Tran Phuong
Hidano, Seira
Kiyomoto, Shinsaku
Publication Year :
2019

Abstract

Attackers create adversarial text to deceive both human perception and the current AI systems to perform malicious purposes such as spam product reviews and fake political posts. We investigate the difference between the adversarial and the original text to prevent the risk. We prove that the text written by a human is more coherent and fluent. Moreover, the human can express the idea through the flexible text with modern words while a machine focuses on optimizing the generated text by the simple and common words. We also suggest a method to identify the adversarial text by extracting the features related to our findings. The proposed method achieves high performance with 82.0% of accuracy and 18.4% of equal error rate, which is better than the existing methods whose the best accuracy is 77.0% corresponding to the error rate 22.8%.<br />Comment: PACLIC 2019, 9 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1912.08981
Document Type :
Working Paper