Back to Search Start Over

Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge

Authors :
Zhao, Wenjin
Fei, Zaiyao
Song, Tiancheng
Choi, Han Kyou
Palomaki, Tauno
Sun, Bosong
Malinowski, Paul
McGuire, Michael A.
Chu, Jiun-Haw
Xu, Xiaodong
Cobden, David H.
Publication Year :
2020

Abstract

The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials. The ability to simply stack very different two dimensional (2D) van der Waals materials in intimate contact permits a different approach. Here we use this approach to couple the helical edges states in a 2D topological insulator, monolayer WTe2, to a 2D layered antiferromagnet, CrI3. We find that the edge conductance is sensitive to the magnetization state of the CrI3, and the coupling can be understood in terms of an exchange field from the nearest and next-nearest CrI3 layers that produces a gap in the helical edge. We also find that the nonlinear edge conductance depends on the magnetization of the nearest CrI3 layer relative to the current direction. At low temperatures this produces an extraordinarily large nonreciprocal current that is switched by changing the antiferromagnetic state of the CrI3.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2001.00634
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/s41563-020-0620-0