Back to Search
Start Over
Critical points of Eisenstein series
- Publication Year :
- 2020
-
Abstract
- For any even integer $k \ge 4$, let $\E_k$ be the normalized Eisenstein series of weight $k$ for $\SL_2(\Z)$. Also let $\D$ be the closure of the standard fundamental domain of the Poincar\'e upper half plane modulo $\SL_2(\Z)$. F.~K.~C.~Rankin and H. P. F. Swinnerton-Dyer showed that all zeros of $\E_k$ in $\D$ are of modulus one. In this article, we study the critical points of $\E_k$, that is to say the zeros of the derivative of $\E_k$. We show that they are simple. We count those belonging to $\D$, prove that they are located on the two vertical edges of $\D$ and produce explicit intervals that separate them. We then count those belonging to $\gamma\D$, for any $\gamma \in \SL_2(\Z)$.
- Subjects :
- Mathematics - Number Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2001.10457
- Document Type :
- Working Paper