Back to Search
Start Over
Effective field theory for triaxially deformed odd-mass nuclei
- Publication Year :
- 2020
-
Abstract
- The effective field theory for collective rotations of triaxially deformed nuclei is generalized to odd-mass nuclei by including the angular momentum of the valence nucleon as an additional degree of freedom. The Hamiltonian is constructed up to next-to-leading order within the effective field theory formalism. The applicability of this Hamiltonian is examined by describing the wobbling bands observed in the lutetium isotopes $^{161,163,165,167}$Lu. It is found that by taking into account the next-to-leading order corrections, quartic in the rotor angular momentum, the wobbling energies $E_{\textrm{wob}}$ and spin-rotational frequency relations $\omega(I)$ are better described than with the leading order Hamiltonian.<br />Comment: 19 pages, 6 figures
- Subjects :
- Nuclear Theory
High Energy Physics - Phenomenology
Nuclear Experiment
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2003.04065
- Document Type :
- Working Paper