Back to Search Start Over

Rainy screens: Collecting rainy datasets, indoors

Authors :
Porav, Horia
Musat, Valentina-Nicoleta
Bruls, Tom
Newman, Paul
Publication Year :
2020

Abstract

Acquisition of data with adverse conditions in robotics is a cumbersome task due to the difficulty in guaranteeing proper ground truth and synchronising with desired weather conditions. In this paper, we present a simple method - recording a high resolution screen - for generating diverse rainy images from existing clear ground-truth images that is domain- and source-agnostic, simple and scales up. This setup allows us to leverage the diversity of existing datasets with auxiliary task ground-truth data, such as semantic segmentation, object positions etc. We generate rainy images with real adherent droplets and rain streaks based on Cityscapes and BDD, and train a de-raining model. We present quantitative results for image reconstruction and semantic segmentation, and qualitative results for an out-of-sample domain, showing that models trained with our data generalize well.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2003.04742
Document Type :
Working Paper