Back to Search Start Over

Predicting rice blast disease: machine learning versus process based models

Authors :
Nettleton, David F.
Katsantonis, Dimitrios
Kalaitzidis, Argyris
Sarafijanovic-Djukic, Natasa
Puigdollers, Pau
Confalonieri, Roberto
Source :
BMC Bioinformatics volume 20, Article number: 514 (2019)
Publication Year :
2020

Abstract

Rice is the second most important cereal crop worldwide, and the first in terms of number of people who depend on it as a major staple food. Rice blast disease is the most important biotic constraint of rice cultivation causing each year millions of dollars of losses. Despite the efforts for breeding new resistant varieties, agricultural practices and chemical control are still the most important methods for disease management. Thus, rice blast forecasting is a primary tool to support rice growers in controlling the disease. In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and WARM) and two approaches based on machine learning algorithms (M5Rules and RNN), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared.

Details

Database :
arXiv
Journal :
BMC Bioinformatics volume 20, Article number: 514 (2019)
Publication Type :
Report
Accession number :
edsarx.2004.01602
Document Type :
Working Paper
Full Text :
https://doi.org/10.1186/s12859-019-3065-1