Back to Search
Start Over
Snapshot Interferometric 3D Imaging by Compressive Sensing and Deep Learning
- Publication Year :
- 2020
-
Abstract
- We demonstrate single-shot compressive three-dimensional (3D) $(x, y, z)$ imaging based on interference coding. The depth dimension of the object is encoded into the interferometric spectra of the light field, resulting a $(x, y, \lambda)$ datacube which is subsequently measured by a single-shot spectrometer. By implementing a compression ratio up to $400$, we are able to reconstruct $1G$ voxels from a 2D measurement. Both an optimization based compressive sensing algorithm and a deep learning network are developed for 3D reconstruction from a single 2D coded measurement. Due to the fast acquisition speed, our approach is able to capture volumetric activities at native camera frame rates, enabling 4D (volumetric-temporal) visualization of dynamic scenes.<br />Comment: 16 pages, 12 figures
- Subjects :
- Electrical Engineering and Systems Science - Image and Video Processing
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2004.02633
- Document Type :
- Working Paper