Back to Search
Start Over
Douglas-Rachford splitting and ADMM for nonconvex optimization: Accelerated and Newton-type linesearch algorithms
- Source :
- Comput Optim Appl 82, 395-440 (2022)
- Publication Year :
- 2020
-
Abstract
- Although the performance of popular optimization algorithms such as Douglas-Rachford splitting (DRS) and the ADMM is satisfactory in small and well-scaled problems, ill conditioning and problem size pose a severe obstacle to their reliable employment. Expanding on recent convergence results for DRS and ADMM applied to nonconvex problems, we propose two linesearch algorithms to enhance and robustify these methods by means of quasi-Newton directions. The proposed algorithms are suited for nonconvex problems, require the same black-box oracle of DRS and ADMM, and maintain their (subsequential) convergence properties. Numerical evidence shows that the employment of L-BFGS in the proposed framework greatly improves convergence of DRS and ADMM, making them robust to ill conditioning. Under regularity and nondegeneracy assumptions at the limit point, superlinear convergence is shown when quasi-Newton Broyden directions are adopted.
- Subjects :
- Mathematics - Optimization and Control
90C06, 90C25, 90C26, 49J52, 49J53
Subjects
Details
- Database :
- arXiv
- Journal :
- Comput Optim Appl 82, 395-440 (2022)
- Publication Type :
- Report
- Accession number :
- edsarx.2005.10230
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1007/s10589-022-00366-y